Browsing "Bioprinter / Biodrucker"

Researchers are using these Philly-made „bioprinters“ to make hearts, stomachs

BioBots makes a device that 3D-prints living cells instead of plastic. The company, founded by Penn grads, is headed to the SXSW Accelerator in Austin next month.

Danny Cabrera was a senior at Penn when opportunity knocked.

It came in the form of Ricardo Solorzano, a recent Penn bioengineering grad who had done his first two years at Miami Dade College, the same state school that Cabrera had transferred from. They never ran into each other in Florida and first met at Penn a few years later. Solorzano had a prototype for a desktop bioprinter, a 3D printer that uses cells to build living tissue. Did Cabrera want to see it?

And lo, BioBots was born.
(…weiter auf technical.ly)

Could 3D Bioprinted Rhino Horn Alternative Save the World’s Rhinoceros Population

We have a problem. Human beings are greedy. Perhaps it is Charles Darwin’s ‘Survival of the Fittest’ playing out in a real world scenario. Whatever it is, it is leading to many species of wildlife becoming extinct and others becoming critically endangered. One of these animals is the rhinoceros, a mammal which is hunted exclusively for its horns.
(…weiter auf 3dprint.com)

3D-Druck: JKU-Studie untersucht Möglichkeiten und Grenzen der Technologie

3D-Druck ist in aller Munde – spektakuläre Berichte über das Drucken von künstlichem Fleisch und künstlichen Organen mit Hilfe Generativer Fertigungsverfahren führten zu euphorischen Vorhersagen zu den Potentialen dieser Technologie. Was aber kann die neue Technologie wirklich leisten, und wie widersprechen sich diese Potentiale und die öffentliche Erwartung? Die InnovationsforscherInnen Johannes Gartner, Daniela Maresch und Matthias Fink vom IFI Institut für Innovationsmanagement der Johannes Kepler Universität (JKU) Linz haben dazu den diesjährigen IFI-JKU Report zu Generativen Fertigungsverfahren präsentiert.
(…weiter auf jku.at)

3D bioprinting offers minimally invasive surgery options

3D printing has made tremendous strides in the medical field: Models of stents, prosthetics and replacement skulls can now all be replicated using this emerging technology.

Over the next five years, the number of printers being shipped annually for medical use will have almost doubled, according to SmartTech Markets Publishing, a market analysis firm for the 3D printing sector.
(…weiter auf foxnews.com)

3D Printed Drug Delivery System Shows Promise in Countering Transplant Rejection

There has been rapid progression seen in the technology used to 3D print live human cells. Over the last four to five years alone we have seen the technology go from only a concept to having several valuable applications. In fact Organovo is already selling 3D printed human liver tissue to the pharmaceutical industry for drug toxicity testing, with their ultimate goal being the 3D printing of entire human organs for transplant.
(…weiter auf 3dprint.com)

Nerve guides manufactured from photocurable polymers to aid peripheral nerve repair

The peripheral nervous system has a limited innate capacity for self-repair following injury, and surgical intervention is often required. For injuries greater than a few millimeters autografting is standard practice although it is associated with donor site morbidity and is limited in its availability. Because of this, nerve guidance conduits (NGCs) can be viewed as an advantageous alternative, but currently have limited efficacy for short and large injury gaps in comparison to autograft. Current commercially available NGC designs rely on existing regulatory approved materials and traditional production methods, limiting improvement of their design. The aim of this study was to establish a novel method for NGC manufacture using a custom built laser-based microstereolithography (μSL) setup that incorporated a 405 nm laser source to produce 3D constructs with ∼50 μm resolution from a photocurable poly(ethylene glycol) resin. These were evaluated by SEM, in vitro neuronal, Schwann and dorsal root ganglion culture and in vivo using a thy-1-YFP-H mouse common fibular nerve injury model. NGCs with dimensions of 1 mm internal diameter × 5 mm length with a wall thickness of 250 μm were fabricated and capable of supporting re-innervation across a 3 mm injury gap after 21 days, with results close to that of an autograft control. The study provides a technology platform for the rapid microfabrication of biocompatible materials, a novel method for in vivo evaluation, and a benchmark for future development in more advanced NGC designs, biodegradable and larger device sizes, and longer-term implantation studies.
(…weiter auf sciencedirect.com)

Increasing the viability of bio-printing human cells

The rapid development of viable inkjet technology for highly specialised applications, such as printing human cells, continues to generate significant interest. If successful, the realisation of this technology for specialised biological applications, generally known as ‚biofabrication‘, has the potential to replace the long established (and often controversial) process of using animals for testing new drugs. However, there are many challenges to overcome to enable the successful production of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates. For example, printing techniques need to be developed which are both controllable and less harmful to the process of preserving human cell tissue viability and functions.
(…weiter auf industrialtechnology.co.uk)

Filipino students develop 3D printed trachea using stem cells from patients

While studies on 3D bio-printing are usually done in multimillion dollar laboratories by award-winning professors, students from the Philippines show that it doesn’t have to be that way. For a team of students from the Technological Institute of the Philippines have successfully constructed a ‘bioreactor’ capable of 3D printing an artificial trachea (or windpipe).
(…weiter auf 3ders.org)

Synthetisches DNA-Gel für den Druck künstlicher Organe entwickelt

Ein zweiteiliges wasserbasiertes Gel aus synthetischer DNA und Polypeptiden bringt den 3D-Biodrucker weiter in Richtung Druck von Organen für die Transplantation oder als Tiermodell. Dongsheng Liu (Tsinghua-Universität Peking) und Will Shu (Heriot-Watt University Edinburgh) und ihre Arbeitsgruppen sahen sich mit den Hauptschwierigkeiten konfrontiert, zum einen eine geeignete Matrix oder ein Gerüst zu finden, das die lebenden Zellen dreidimensional unterstützt, zum anderen, ein konsistentes Produkt herzustellen, das der Empfänger des Spenderorgans nicht wieder abstößt.
(…weiter auf analytik-news.de)

Seiten:«1...6789101112...41»

Wir setzen für unseren Internetauftritt sog. Cookies ein. Durch Einstellungen in Ihrem Browser können Sie die weitere Verwendung von Cookies deaktivieren. Weitere Informationen zu Cookies finden Sie in unserer Datenschutzerklärung

Die Cookie-Einstellungen auf dieser Website sind auf "Cookies zulassen" eingestellt, um das beste Surferlebnis zu ermöglichen. Wenn du diese Website ohne Änderung der Cookie-Einstellungen verwendest oder auf "Akzeptieren" klickst, erklärst du sich damit einverstanden.

Schließen